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Abstract 

In fingerprinting methods, small differences between chromatograms with rather complex appearance have to be 
detected. Pattern recognition methods based on principal component analysis (PCA) could be a useful tool, but for 
chromatographic profiles as input data a severe problem is the great impact of chromatographic variations 

compared with true variations in sample composition. The problem has been analysed in terms of parameter 
variations for exponentially modified Gaussian peaks, and a procedure has been developed to align a sample 
chromatogram towards a target chromatogram in order to compensate for (i) small shifts in retention time (not due 
to different sample components), (ii) common variations in peak area (not due to sample composition) and (iii) 
variations in level and slope of the baseline. The effects of the alignment procedure on the PCA is demonstrated 

for a set of chromatographic profiles intended for peptide mapping. 

1. Introduction 

Several important analytical techniques used 
for biological samples rely on a comparison of 
chromatographic profiles. Examples of applica- 

tion areas are food and beverage analysis [ 11, 
DNA fingerprinting [2], pyrolysis-GC [3] and 

peptide mapping [4.5]. Sometimes the original 
sample is analysed for its components, whereas 
in other instances the sample is fragmented 

before the analysis. The analysis is performed by 

a separation of the components or fragments, 
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e.g., by electrophoresis or chromatography, and 

the resulting profile is used as a pattern or 
fingerprint for the sample. In many instances, 
the evaluation consists of a direct visual com- 

parison with a reference sample, in order to 
detect profile differences. 

An important characteristic of these finger- 

printing methods, is that the significant infor- 
mation may be contained in the presence or 
absence of certain components or fragments. 

Small differences between samples that overall 
are similar can, for instance, be detected by the 

altered retention time for a certain fragment 
containing the modified site. This differentiates 
these methods from techniques in which the 
determination of certain components in the sam- 

ples provide the information. Another aspect is 
that it is seldom necessary, or even possible, to 

identify and quantify all peaks in the profile. The 
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overall appearance of the fingerprint is instead 
used for discrimination purposes, making these 
methods qualitative rather than quantitative. 

Peptide mapping is a fingerprinting method 
frequently used for quality control in the 
biotechnological production of recombinant 
DNA-derived proteins [6]. It is necessary to 

establish that the amino acid sequence is the 
same for different production batches. The pro- 
tein is fragmented, by chemical cleavage or 
enzymatic digestion, and the resulting peptide 
fragments are separated, usually by reversed- 
phase liquid chromatography (RPIX). This tech- 

nique will be used as an illustrative example in 
the present paper, while a more detailed discus- 
sion of the experimental aspects will be given in 
the accompanying paper [7]. 

The chromatographic separation is associated 
with several sources of variation that may have a 

large impact on the overall pattern. Variations in 
the mobile phase composition, gradient repro- 
ducibility, temperature variations and column 

variability lead to shifts in the chromatographic 
pattern, making the evaluation more difficult. If 

severa chromatograms are to be compared, 
these matters should be considered. On the 
other hand, if two sequential chromatograms, 
run with the same mobile phase preparation and 
on the same column, are compared, these chro- 
matographic variations might not be very severe. 

The result of a manual comparison of chro- 
matographic profiles may depend on the indi- 
viduals performing the comparison. Multivariate 

methods that can cope with the variations in the 
digestion of reference samples make the evalua- 
tion less subjective. The idea is to gather a whole 

set of reference chromatograms that represents 
the normal variations in the chromatographic 
profile caused by the experimental conditions. 

Principal component analysis (PCA) [S] can be 
used to identify the main variation sources and 
to highlight the peaks where the variations are 

reflected. New test samples can subsequently be 
classified by multivariate classification methods. 

The multivariate data analysis is conducted on 
a data set where the objects, the reference 
chromatograms in this case, are described by a 

number of variables. Some of the different 
approaches for conversion of chromatographic 
traces to variable values that have been sug- 

gested will be briefly discussed here. 
The most intuitive approach is to represent the 

chromatograms by integration reports, i.e., the 

retention time and peak area for all detected 
peaks. The peak areas for all, or selected, peaks 
may constitute the variable values, provided a 
correct assignment of the peaks can be made 
between the chromatograms. An important pre- 
requisite for multivariate analysis is that the 

variations should be expressed as different levels 
of the variables, not as shifts between variables 
[9]. Incorrect peak assignments imply that the 
quantity of a certain solute will be contained in 
different variables between the objects, thus 
reducing the quality of the data set. 

The peak assignment is usually based entirely 
on retention time matching, unless a specific 
detector, e.g., a mass spectrometer, can identify 

the peaks. The assignment process is simplified if 
the retention times of the peaks are synchronized 
between the chromatograms. Several methods 

for peak synchronization, where the retention 
times of the detected peaks are adjusted using 

reference peaks that can be identified in all 
chromatograms, have been developed for multi- 
variate analysis in fingerprinting contexts. These 
methods are conceptually related to the use of 

retention indices in GC. The retention time 
matching is only qualitative, as the retention 

times are used for identification purposes only. 
Crawford and Hellmuth [lo] used two internal 
standard peaks to make minor linear adjust- 

ments of the retention times. More elaborate 
methods using multiple reference peaks have 
also been presented, e.g., by Mayfield and 

Bertsch [ 111, Pino et al. [12], and Parrish et al. 

[W* 
Multivariate analysis of chromatograms repre- 

sented by peak areas for a number of peaks is of 
limited value in peptide mapping, where the 
purpose is to detect modifications of the amino 

acid sequence. All peaks correspond to potential 
modification sites, and a single amino acid substi- 
tution may lead to a large change in retention. 
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This not only complicates the peak assignment, 
but implies that no relevant assignment can be 

made for the modified fragment as it actually 
constitutes a new peak. No variable will be 

present in the data set to contain its peak area. 

The variable values can instead be defined by 
window summation, where the chromatogram is 
divided into a number of consecutive retention 

time segments. Each segment corresponds to one 
variable in the data set, and the variable value is 

calculated as the sum of the total signal within 
the window. This approach has been used, for 
instance, by Headley and Hardy [ 11 for detection 
of contaminants in whiskey based on GC pro- 
files. Recently. Armanino et al. [14] presented a 
similar method for extraction of information 

regarding air pollution from GC profiles. In the 
latter instance, the window summation was pre- 
ceded by retention alignment. A serious draw- 

back of the window summation approach is the 
inherent loss of resolution. The effect of the 
summation is essentially a decrease in the sam- 

pling frequency, where each variable value cor- 
responds to an averaged signal within the win- 

dow. This means that variations in the size of a 
small peak may not be detected if it occurs in the 
same window as a large peak. 

Fingerprinting methods in general, and pep- 

tide mapping in particular, put strong demands 
on the resolution and peak capacity, thus en- 

hancing the previously mentioned drawback of 
window summation. A more adequate approach 
would be to use the entire chromatographic 
profile, i.e., the digitalized detector signal, di- 

rectly. The data set will then have one variable 
for each data point in the chromatogram. Such 

large data sets were previously considered im- 
practical, forcing variable reductions prior to the 
multivariate analysis, but the advent of powerful 
personal computers allows the direct analysis of 

large data sets. The present paper deals with 
some special aspects of chromatographic profiles 
in multivariate analysis. A preprocessing pro- 
cedure is presented that facilitates the characteri- 
zation of a set of reference chromatograms by 
PCA. An application of this procedure con- 

cerning multivariate classification of peptidc 

mapping chromatograms is discussed in the ac- 

companying paper [7]. 

2. Chromatographic profiles in PCA 

It is important to realize that PCA is sensitive 
to all variations in the data set, i.e., not only 

those emanating from differences between the 
samples but also to variations caused by the 
chromatographic process. The latter aspect will 

be treated in some detail, illustrating the in- 
fluence of chromatographic variations in PCA. 

A commonly used model for chromatographic 
peaks is the exponentially modified Gaussian 
function, EMG [15]. With this function the 

response y(t) is characterized by four parame- 
ters: 

y(r) = A 7 exp[+ (F)* - (q)] fi exp(-x2) dx 
- s 

(1) 
where A is the peak area, t, and (T are the 

retention time and width (standard deviation) of 
a unit area Gaussian peak and r is the time 
constant of the modifying exponential decay 
(tailing). The upper limit of integration is given 

by z = (t - t,)l~ - (TIT. 

2.1. Linear approximation for peak difference 

Small shifts in the EMG parameters give rise 
to variations in the resulting peaks. In order to 
compare two similar peaks we can look at the 

difference Ay, which can be approximated by 

i.e., a linear combination of the parameter shifts 

with the corresponding partial derivatives as 
coefficients. These partial derivatives with re- 
spect to the parameters are derived in the 

Appendix. Although the EMG function is rather 
complex. the results can be related to the origi- 
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nal peak in a simple way. Except for scaling 
constants they are 

aY 
z = YW (3) 

( i.e., the EMG function itself); 

aY dY -=- 
at, dt 

( i.e., the time derivative); 

(4) 

ay d’y -=- 
&T dt2 

(i.e., the second time derivative); 

aY dY --I/+ 
-=- 

ar dt *e 

(5) 

(i.e., the time derivative, exponentially modified 
by convolution once more). 

The first two partial derivatives can easily be 
perceived. The area parameter is just a scaling 
constant, and a change in retention time appears 

as a shift along the time axis. 
The linear approximation holds for each point 

in time, i.e., the response difference A&) can be 
regarded as a linear combination of the partial 
derivatives (as functions of time) with the param- 
eter shifts as coefficients. It is valid only for small 

deviations in the parameters, except for the 
scaling parameter A, where a linear relation 
holds for all values. In Fig. 1 the validity of the 

Fig. 1. Top: EMG peaks with deviations in A, t,, CT, and 7. 

respectively (from left to right). Bottom: the resulting 

differences (solid lines) and the linear approximations using 

partial derivatives (dashed lines). The derivatives were ob- 

tained for A = 1 (arbitrary units). [, = 40%. (T = 8% and T 

= 5% compared with the length of the time scale. The 

parameter deviations were bA = 20.2, Atr = +4%. Au = 

*2.5% and AT = k2.570. 

approximation is demonstrated for certain values 
of parameter deviation. These values are chosen 
to represent a practical limit for the linear 

approximation. The area deviation is merely 

chosen to give a realistic picture of all parameter 
variations. 

2.2. PCA of the EMG parameter shifts 

To characterize the variations for a set of 
similar chromatographic peaks (e.g., a set of 
single-peak chromatograms), we can apply PCA 

[8]. With this technique, the chromatograms are 
described as linear combinations of deviations 

P&)7 p2(t), * * . from the mean chromatogram 

y,,,,(t). For chromatogram i one obtains 

Yi(‘) =YrneanCt) + sil PI(t) + si*PZ(t) + . ’ * (7) 

Although written as time functions, the chro- 

matogram y,(t) and the deviations PI(t), 

PAf), . . . are represented as sampled values at tj, 
for i= 1,2,3,. . . In the context of PCA, the 

sampled values of the chromatograms are as- 
signed to separate variables, one for each point 
in time. The results of PCA are the coefficients 

Sil>Si’r. . * 3 one set for each chromatogram, and 
the sampled values p1 (t,), p2(ti), . . . The latter 
are referred to as loadings (loading vectors), 

deviation patterns that are common for the 
whole set of chromatograms. The loadings are 
constructed one by one, starting with pl(tj), in 

such a way that the current approximations are 
as close to y,(t) as possible in the sense of least 

squares (all chromatograms included). The in- 

dividual chromatograms are then represented by 
the coefficients s,~, si2, . . . , which are called the 
scores for chromatogram i. 

Using PCA, the variations around the mean 
chromatogram are thus described by a number of 

components with contributions sIIpl(t), ~,~p~(t), 
etc. The first component accounts for as much 
variation as possible in the original set of chro- 
matograms, the second plays the same role for 

the remaining residuals, and so on. This is 
reflected in a decreasing series of measures for 
“explained variance”, the sum of which ap- 

proaches 100% when the number of components 
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equals the number of independent sources of 
variation. Owing to the effect of noise and non- 
linearities, the optimum number of components 
must be determined by some more elaborate 
procedure, usually by cross-validation [16]. 

2.3. PCA for single peak variations 

If the variations arise from shifts in only one of 
the EMG parameters, we will obtain one main 

component from the PCA. The loadings for this 
component, i.e., the shape of the variation, then 
corresponds to the partial derivative for that 

parameter (since the deviation from the average 
curve can be approximated by Eq. 2 for each 
curve). To verify this. a series of five EMG peaks 

were generated for each parameter (A, t,, (T and 

T), with parameter values evenly distributed 
within the same range as before (cf., Fig. 1). 
Except for a normalizing constant, the loadings 
obtained with PCA were almost identical with 
the partial derivatives (cf.. Fig. l), and the 

scores were related to the parameter deviations 
in a linear way. This is demonstrated by the 
correlation coefficients listed in Table 1, where 
also the amount of explained variance is given. 
The deviation from unity (100%) indicates the 

influence of non-linear relationships for the pa- 
rameter in question. 

When there are variations in more than one of 
the parameters, there will be additional principal 
components. In Fig. 2 a design is shown for 
deviations in area and also in retention time, 

Table I 
Results from PCA of chromatograms with variations in one 
parameter 

Parameter Correlation coefficient Explained variance (% ) 

an hh 

AA 1 .oooo 1 .ootwI 100 

A*, 0.9993 O.YYYY Y7.4 
Acr 0.9965 0.903h YX.3 
AT 0.9978 O.YY74 YX.4 

“ Correlation between the PC1 loadings and the partial 

derivative. 

h Correlation between the PC.1 scores and the parameter 

values. 

\ 
\ 

PC1 ,’ 
Fig. 2. Top: design of variations in A and t, and the EMG 

peaks for the corner points, (?hA, +Atr). Bottom: score 

plot for PC1 and PC2 (left) and the loadings for PC1 (solid 

line) and PC2 (dashed line). 

together with the resulting curves corresponding 
to the corners of the square design.Two principal 

components are obtained, which together ex- 
plain 98.6% of the variance. The PCA results 
are also depicted in Fig. 2. The two-dimensional 

score plot reflects the design pattern, with the 
deviations in retention time along the first princi- 
pal component (PCl) and those in area along the 

second (PC2). In the two loading plots, the peak 
derivative shape connected with At, dominates 
PC1 and the peak shape for AA dominates PC2. 

Thus the shifts in retention time had the greatest 
influence on the peaks, and the first component 
alone could explain 64.4% of the variations. The 

distortion of the design pattern shows the in- 
fluence of non-linearities and interactions be- 
tween the parameters. 

A similar design for deviations in Q and 7, and 
the resulting curves for the corner points, are 
shown in Fig. 3 together with the results of PCA. 

Now the design seems to be tilted in the score 
plot, and the two loading plots are actually linear 
combinations of the two partial derivatives. Thus 

PCA does not separate the true sources of 
variations, the principal components are con- 

structed as linearly independent combinations 
(orthogonal loading vectors). In the preceding 
case the two partial derivatives were actually 



76 G. Malmquist. R. Danielnon I J. Chromatogr. A 687 (1994) 71-88 

PC1 
;!’ 

Fig. 3. Top: design of variations in u and 7 and the EMG 

peaks for the corner points, (,cAu. zAT). Bottom: score plot 

for PC1 and PC2 (left) and the loadings for PC1 (solid line) 

and PC2 (dashed line). 

almost linearly independent (orthogonal func- 

tions), which explains the successful separation. 
For the deviations in (T and T the first com- 
ponent, PCl, accounts for 74.7% of the varia- 

tions, and the second, PC2, for 22.6%. Again, 
non-linearities and interactions are responsible 
for the distortion of the regular design pattern. 

It should be noted that the main features of 
the parameter design patterns were revealed by 
PCA without any evaluation of the parameter 

values from the -curves. Such 
obtained from the statistical 

much problems related to the 
non-linear regression, which for 
tion is not a trivial task. 

values must be 
moments, with 

baseline, or by 
the EMG func- 

I ‘% ,’ 
PCI 

Fig. 4. Top: design of area variations for the two peaks (A, 
= 1. AA, = kO.2. A, = 0.8, AA: = t0.2) and the EMG 

peaks for the corner points. Bottom: score plot for PC1 and 

PC2 (left) and the loadings for PC1 (solid line) and PC2 

(dashed line). 

reflect the sum and difference, respectively, of 
the single peak variation pattern. In a real case, 

however, the area variations are often coupled. 
Variations in the injected amount of sample have 
the same influence on both peaks, corresponding 

to one principal component with loadings in 
accordance with the sum (cf., PC1 in Fig. 4). On 
the other hand, another common situation is 

variations in the area distribution between 
peaks. When this is the case, the loadings for the 
corresponding principal component will be the 
difference (cf., PC2 in Fig. 4). 

3. Alignment of chromatographic profiles 
2.4. PCA for multiple peak variations 

With more than one peak in the chromato- 
gram, there are more parameters with possible 
deviations to be accounted for. A simple exam- 

ple will show some features of PCA in the case 
of multiple peaks. In Fig. 4 the design for area 

deviations in two peaks is shown, together with 
the curves corresponding to the corners. The 
results from PCA, i.e., the scores and the 
loadings, are also shown in Fig. 4. Again, the 
design pattern is tilted in the score plot and the 
diagonal direction of PC1 maximizes the varia- 
tions _ 

When the area for two peaks varies indepen- 
dently. the loading plots for PC1 and PC2 will 

When PCA is applied to a set of chromato- 
graphic profiles with multiple peaks, several 
types of variation sources may be encountered. 

Usually we are looking for variations between 
samples, and the variations induced by the 

chromatographic procedure are then a severe 
complication, The maximum variation principle 

in PCA implies mixing of these sources within 
the principal components, and the variations of 

interest may be difficult to discern. In general 
the main source of variation is small shifts in 

retention time, systematic for all peaks as well as 
random for individual peaks, caused by, for 

example, variations in flow-rate, mobile phase 
composition, or gradient slope. Furthermore, the 
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overall variations in the chromatographic signal 
due to the injected amount of sample, detector 

sensitivity, etc. ) are reflected in the first principal 
components. The true sample variations may be 

small in comparison, and hence difficult to dis- 
tinguish in the results of PCA. To detect differ- 
ences between the samples that are independent 
of the chromatographic variations, these varia- 

tions have to be reduced. Otherwise, the re- 
tention shifts and differences in the injected 

amount may conceal significant information re- 
garding the samples. 

The unwanted variations can be minimized by 
increased reproducibility in the chromatographic 

procedure, but multivariate analysis with chro- 
matographic profiles as input data is sensitive to 

even minute variations. This requires a post- 
chromatographic alignment of the profiles, much 
in the same spirit as the retention time matching 

methods described in the Introduction. How- 
ever, it must be stressed that chromatographic 
profiles as input data requires a quantitative 

alignment of the time scale in contrast to the 
more qualitative matching of peaks in the former 
instance. 

As early as 1979, Reiner et al. 1171 suggested a 
method to compensate for retention shifts. Each 
data point in the profile was adjusted towards a 

reference chromatogram according to a “timc- 
warping” function. The aligned chromatograms 
were used for visual comparisons only. without 
any use of multivariate methods. Another solu- 
tion has recently been proposed by Andersson 

and Hamaltiinen [18], commercially available as 
the software ChromPro [19]. The entire profile is 
adjusted towards a selected target chromato- 
gram, using two parameters corresponding to 
linear displacement of the profile and compres- 

sion/expansion of the time scale, respectively. 

The parameter values are determined by non- 
linear regression using a simplex procedure, 
maximizing the correlation within two selected 

retention windows. The aligned chromatogram is 
calculated by linear interpolation between the 
two windows. preferably situated in the start and 

the end of the chromatogram. This approach is 
useful for chromatograms with relatively broad 
peaks. In some instances, the chromatographic 

profile has to be divided into several segments, 

each aligned individually [18]. A similar pro- 
cedure has been used by Wathelet and Marlier 
[20] for alignment of migration distances in 

electrophoresis. In the work of Armanino et al. 
[ 141, the chromatograms are synchronized using 
multiple peaks prior to the window summation. 

Unfortunately, no details were given about the 
synchronizing algorithm. 

The high peak capacity and separation power 

necessary for peptide mapping fingerprints often 
require segmented gradients in order to obtain 
adequate resolution within a reasonable analysis 

time [213. Linear expansion or compression of 
the time scale will not be sufficient in these 
cases. The large number of peaks and the sen- 

sitivity of the retention towards the mobile phase 
composition further emphasize that the neces- 
sary alignment function may be non-linear. This 

requires a more elaborate method with indi- 
vidual alignment of peaks throughout the whole 

chromatogram. A method for such alignment for 
NMR profiles has been used by Vogels et al. [22]. 
In this instance, individual groups of lines in the 

two spectra are matched and brought to the 
same resonance position. In chromatography, 
however, it is seldom possible to match all peaks 

individually. There is a need for some interpola- 
tion of the alignment between the selected 

peaks. 
Normalization to constant area is a common 

procedure used to compensate for the different 

amounts of injected sample. This method implies 
so-called closure of the data set, i.e., if one peak 
increases the size of other peaks must decrease 
1231. This may lead to artificial correlations in 
the data set and thus degrade the quality of the 
data. In the proposed method, a selective nor- 

malization is made, by considering only selected 
peaks in the calculation of the normalization 
factor. 

In this work, a combined procedure was de- 
veloped to reduce the chromatographic varia- 

tions. The idea is to align the sample chromato- 
grams towards a target chromatogram in order to 
compensate for (i) small shifts in retention time 

(not due to different sample components), (ii) 
common variations in peak area (not due to 



sample composition) and (iii) variations in level 
and slope of the baseline. 

The alignment procedure consists of several 
steps, which will be illustrated with an example 
concerning peptide mapping. From a set of 
chromatograms obtained as described under Ex- 
perimental, one representative chromatogram 
was selected as the target chromatogram. The 
sample ~hromatogram was arbitrarily chosen 
from the others. Each chromatogram is repre- 
sented by 4900 data points, the peak width 
corresponding to about JO points. Later the 
effects on PCA for the total set, when all 
chromatograms are aligned to the selected 
target, will be discussed. 

3.1. Comparative chromatogram plot 

To facilitate the alignment procedure a de- 
scriptive plot of the chromatograms is utilized. 
The sample ~hromatogram (the one to adjust) is 
plotted versus the target chromatogram in a 
comparative chromatogram plot (CCP). The 
features of this plot is demonstrated by a sim- 
pIified example. Two simulated chromatograms 
(Fig. 5, left), with peaks differing in seIected 
ways, illustrate the corresponding effects un the 
CCP (Fig. 5, right). Especially small retention 

10 20 3; 
Fig. 6. Mirror plot of 

target chromatograms. 

(top) the sampie and (bottom) the 

shifts, the main obstacle when applying PCA to 
chromatograms, are clearly revealed as “loops”. 
Although well indicated by a curved line, devia- 
tions in band broadening (u) are not accounted 
for in the alignment procedure to be described. 

For our real example the two chromatograms 
are shown in the traditiona “mirror plot” (Fig. 
6) and also the comparative ~hromatogram plot 
(Fig. 7). The dominant feature in the CCP is the 
wide loops, indicating that the retention time 

CHWMATOGRAM X 

Fig. 5. Left: two chromatograms with four EMG peaks: A = no parameter shifts; B = shift in I,; C = shift in A; D = shift in cr. 

Right: the CCP of the two chromatograms. 
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Target chromatogram 

7. The CCP for the untreated sample chromatogram. 

scale is shifted between the two chromatograms 
(cf. peak B in Fig. 5). 

3.2. Retention ulignnwnr 

The first part of the alignment procedure is to 
align the retention for peaks that are assumed to 

correspond to the same sample component. For 

the two chromatograms _~,~,~,,,,~(r) and _~~;,~~~,(t) 
the cross-correlation function (crf) is defined as 

which for equidistant data points is evaluated as 
the sum 

This function is calculated for discrete values 
at=o. k-1, 22,. . . , where the integers refer to 
the time displacement expressed as number of 
sampling intervals. 

In the first step, the cross-correlation function 
is caIculated for all data points in the two 
chromatograms, and a maximum is obtained for 
some Ar. This integer time shift value is used as 
an overall time shift for a coarse precorrection of 
the test chromatogram by renumbering the data 

points. This corrects for any large shift of the 
chromatogram along the time axis. 

In the second step, a limited number of peaks, 

those with the largest peak heights, are selected 
from the target chromatogram. If the number is 
not too high, the selected peaks correspond to 

main components and should appear in the 
sample chromatogram also, as we are dealing 
with sets of apparently similar chromatograms. 

For each of these peaks, a section of the target 
chromatogram is taken around the peak centre. 

The length of this section is typically a few peak 
widths. and related to the largest time shift 
allowed. The cross-correlation function for each 

section and the corresponding section of the 

sample chromatogram is calculated, and from its 
maximum the time correction for each selected 
peak is obtained. The position of the ccf maxi- 

mum indicates how many data points (i.e., 
sampling intervals) the section of the sample 
chromatogram must be shifted to match that of 

the target chromatogram as close as possible. 
The individual time shifts, which are valid at 

the centre of the selected peaks, are used to 
construct a time displacement function St(t) for 
the sample chromatogram. The time shift for all 

points between these fix points is calculated by 

linear interpolation as shown in Fig. 8, where the 

fix points are indicated by circles. By visual 
inspection of the time displacement function, any 
mis-matches for the selected peaks are detected, 

e.g., as obvious outliers in the curve, and can be 
removed. 

For the sample chromatogram a corrected 
time scale, t’ = t + &r(t), is now applied. The 

sample chromatogram is evaluated at the points 

20 - 

t-kg. 8. The time displacement function for the coarse time 

ahgnment. The target chrnmatogram is shown for identifica- 

tlon of selected peaks. 
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in time where the target chromatogram is sam- number of peaks, but so far no adjustment was 
pled made. 

YLple(O = Ysample (0 = YsampJf + s+)l (10) 

When the corrected time value lies between 
two adjacent points in the sample chromato- 

gram, Y Lplc (t) is calculated from the adjacent 
points by linear interpolation. The CCP for the 

sample chromatogram at this stage is shown in 
Fig. 9. 

In the third step, a larger number of peaks in 
the target chromatogram are involved. For all 

peaks identified as local maxima, the cross-corre- 
lation function with the same section of the 
pre-aligned sample chromatogram is calculated. 

This time a smaller number of shifts (sampling 
intervals) are allowed, corresponding to about 
half the peak width. The maximum value of the 
ccf for each peak is used together with the peak 
height in the target chromatogram to sort the 
peaks, with highest preference for large peaks 

that correlates well with the corresponding por- 
tion of the sample chromatogram. 

Because even small variations in retention 
times have a great influence on the principal 

components, a fourth fine-tuning step is desir- 
able. A certain number of peaks are taken from 

the sorted list, and for each one the ccf is 
calculated for five points around the maximum 
found in the previous step. To these values a 
polynomial is fitted, and if the maximum of the 

polynomial lies within the five points, the peak is 
a candidate for matching. Again a piece-wise 

linear time displacement function s’t(t) is con- 
structed from the positions of the ccf maxima 
(now non-integer values), the validity of which 

should be checked by visual inspection as before, 
The final alignment of the sample chromato- 

gram according to 

YLlplc (f> = Y :ample [t + WOI (11) 

So far the time shifts have been obtained as 

integer values of the sampling interval. In the 
first two steps the sample chromatogram was 

actually recalculated (coarse alignment of select- 
ed main peaks). The result of the third step was 
a list of integer time shift values for a larger 

is obtained in the same way as before. The 

comparative chromatogram plot after time align- 
ment is displayed in Fig. 10, which should be 

compared with that for the untreated data (Fig. 

7). 

3.3. Response corrections 

In Fig. 10. the CCP so far, a dashed line 
indicates the trace for identical peaks, i.e., with 

Target chromatogram 

Fig. 9. The CCP after the coarse time alignment. 

Target chromatogram 

Fig. 10. The CCP after the final time alignment. The dashed 

Line is the trace for identical peaks. 
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the same chromatographic response at all sam- 
pling events. It is seen that the majority of points 
fall on one side of this line. Obviously there is a 

need for a common correction factor for all 
peaks, but some smaller peaks do show devia- 

tions from the main trace. These true differences 
in peak area must be considered when the 
normalization is performed. The proposed meth- 

od applies a least-squares fit, which also takes 
into account possible differences in the baseline 
characteristics (level and slope). The linear re- 

gression model is 

Y:,,,,,,,(‘) = a + br + cYr;,rgc,W ( w 

The regression is obtained iteratively, initially 
using all data points. Then all points too far from 
the ideal trace are excluded from the regression, 

according to the condition 

IY:iamplc (0 - a - br - cY~;,rpJOI < k + I>;,,,,&> 

(13) 

The constants k and 1 define a wedge-shaped 

strip around the ideal diagonal trace, and points 
outside this strip are rejected. The regression is 
repeated without these points, leading to new 

values for a, b and c and a new test for exclu- 
sion. Finally, the set of excluded points is con- 

stant, which ends the regression procedure. 

Target chromatogram 

Fig. II. The CCP after time alignment and response correc- 

tion. The dashed Lines indicate conditions for data points 

used in regression. 

81 

‘!“i 
Fig. 12. Peaks with true area differences in the sample 

chromatogram (top) compared to the target chromatogram 

( bottom). 

The final correction of the sample chromato- 

gram is then 

and the resulting comparative chromatogram 
plot is shown in Fig. 11, where also the lines of 
rejection are indicated. The segments that fall 
outside these lines are regarded as peaks with a 

true area difference, and a chromatogram where 
only such peaks are shown is a tool for pinpoint- 
ing the sample differences (Fig. 12). A similar 
method for response correction, multiplicative 

scattering correction (MSC), has been used to 
pretreat near-infrared reflectance spectra prior to 

multivariate calibration [24]. 

4. Experimental 

4. I. Tr~ptic digests 

The tryptic digests of equine cytochrome c 

(Sigma. St. Louis, MO, USA) were prepared 
according to the procedure described by Ren- 
lund et al. [25], with the exception that the 

concentration of trypsin (Sigma) was decreased 
to 0.2 pg/p*l [26]. The procedure was also scaled 
up five times, by increasing the volumes in all 

steps. Four replicated preparations of the re- 
agents for denaturation and cysteine reduction, 
desalting buffer and the trypsin solution were 
used. 
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4.2. Chromatographic procedure 

The tryptic digests were injected by a CMA 
2001240 refrigerated (4°C) autosampler (CMA 
Microdialysis, Stockholm, Sweden), and sepa- 
rated on a SuperPac Pep-S C?/C,, (5 pm, 100 
A) column (2.50 x 4 mm I.D.) using a precolumn 
(10 X 4 mm I.D.} packed with the same materi- 

al. The separations were performed with a 
Model 2249 gradient pump with detection at 21.5 

nm by a Model 2141 variable-wavelength 
monitor. The chromatographic system was con- 
trolled by HPLCmanager software, also used to 
store the chromatograms prior to the multi- 

variate analysis. All chromatographic columns 
and instruments were from Pharmacia Biotech 

(Uppsala, Sweden), except where indicated. 
The separations were performed by gradient 

elution (flow-rate 1 ml/min). The mobile phases 

were consistently prepared by weighing instead 
of volumetric measurements. The aqueous phase 
(A) consisted of 50 mM phosphate buffer (pH 

2.5), prepared by mixing fixed amounts of stock 
solutions of phosphoric acid and sodium dihydro- 
genphosphate (both from Merck, Darmstadt, 

Germany). The organic phase (B) consisted of 
acetonitrile-A (80:20). The acetonitrile was of 

gradient grade (Merck). The mobile phases were 

degassed by sparging with helium for 5 min (A) 
and 10 min (B). The samples (125 ~1) were 
eluted with a linear gradient from 0 to 60% B in 

96 min, corresponding to a gradient slope of 
0.5% acetonitrile / ml. All calculations were im- 

plemented in the programming environment 
ASYST (Macmillan Software, New York, USA). 

5. Results and discussion 

To test the performance of the proposed 
alignment and selective normalization proce- 

dure, 27 replicated digests of equine cytochrome 
c were prepared as described under Experimen- 
tal. The digestions were divided into two sets, 

consisting of fourteen and thirteen samples, 
respectively. The protein samples in each set 
were simultaneously digested in the same ther- 

mostated digestion block. Within each set, diges- 
tions were made with two separate preparations 
of all reagents, e.g., denaturing agent, cysteine 

reducing agent and trypsin solution. After the 
complete digestion, the digests were stored at 
4°C and chromatographed twice, each replicate 
performed with freshly prepared mobile phases. 
The time between the digestion and the last 
injection were in all instances less than 4 days 

(this storage time can be accepted, as shown by 
Dougherty et al. [27]). The training set for PCA 
consists of 54 chromatograms, as described in 

Table 2. 
The training set was pretreated by the pro- 

cedure presented above. A suitable target chro- 

matogram can be chosen by arbitrarily selecting 
one of the training set chromatograms with 
intermediate retention for the majority of the 

peaks. Another approach is to perform PCA on 
the raw, non-aligned, chromatograms and select 
the chromatogram that correlates best with the 
first principal component [ZO]. For this data set, 
chromatogram No. 27 (see Table 2) was select- 
ed, as it fulfilled both these criteria. 

The proposed alignment and selective normali- 
zation procedure was tested by performing PCA 
on the data set in different phases of the pro- 

cedure. The three versions of the data set corre- 
spond to (i) raw data, (ii) retention aligned 

chromatograms and (iii) the final data set where 
the selective normalization and baseline correc- 
tion is included. It is important to realize that the 

pretreatment of the chromatograms has reduced 
the total amount of variation by removing the 
retention shifts and differences in the injected 

amount. The total sum of squares is calculated 

bY 

(15) 

where N and P are the number of objects and 
data points (variables), respectively. The average 
chromatogram is denoted by p((t,). Comparison 

of the total sum of squares between the three 
phases of the pretreatment (see Table 3) shows 
that the variations have been reduced to about 
1.6% of the initial amount. 
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Table 2 

Design of the training set 

Digest Amount of 

protein (mg) 

Chromatogram Digestion Reagent Mobile phase 

set preparation preparation 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

0.62 

0.56 

0.64 

0.48 

0.65 

0.53 

0.48 

0.55 

0.47 

0.53 

0.45 

0.59 

0.60 

0.55 

0.47 

0.51 

0.45 

0.49 

0.44 

0.61 

0.52 

0.61 

0.55 

0.57 

0.43 

0.53 

0.51 

a 

b 

a 

b 
a 

b 

a 

b 

a 

h 

a 

h 

a 
h 

d 

c 

d 

d 

d 

A/C 

A/C 

A/C 

A/C 

AIC 

A/C 

A/C 

BID 

BID 

BID 

B/D 

B/D 

B/D 

BID 

E/G 

EIG 
E/G 

E/G 

E/G 

E/G 

F/H 

F/H 

F/H 

F/H 

F/H 

F/H 

F/H 

Each digest was chromatographed twice with replicated mobile phase preparations. 

a Indicates the selected target chromatogram. 

Table 3 

Results from PCA on the data set in different phases of the pretreatment 

Data set 

Raw data 

Aligned data 

Final data 

SL, ‘I 

11% 

63.7 

19.3 

Rankh 

6 

4 

s 

Explained variance (% of SS,,,) 

PC1 PC2 PC3 

41.2 ‘3. I 16.0 
84.X Y.Y I.6 

67.X I0.Y 6.X 

PC4 

7.6 

1.4 

5.5 

PC5 

3.1 

2.4 

PC6 

2.0 

Total’ 

94.0 

97.7 

93.4 

‘Total sum of squares in the data set. calculated hy Eq. 1.5. 

h Number of significant principal components according to cross-validation. 

’ Cumulative explained variance with the significant components. 
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5.1. Characterization by principal component 
analysis 

The data set consists of 54 objects (chromato- 
grams), each described by 4900 variables (sam- 

pling interval 0.8 s). Before the PCA, the (54 X 
4900)-dimensional matrix was mean centred. 
i.e., for each individual variable the mean over 

all chromatograms was subtracted from each 
chromatogram. 

The number of significant principal compo- 

nents is not very important if the main purpose 
of the PCA is to characterize the data set. 
looking for patterns and groupings between the 

chromatograms. The principal components are 
calculated so that the amount of variance that is 
explained by the individual components de- 

creases for each additional component (see Table 
3). This means that the main information regard- 
ing the variations in the data set is found in the 

first few components. In this case it is sufficient 
to calculate an arbitrarily chosen number of 
principal components and then examine the 

score plots for the first components. Neverthe- 
less. cross-validation [ Ih] can be used to de- 

termine the number of components corre- 
sponding to the model with the best predictive 
ability. 

To assess the influence of the chromatographic 
variations in the data set. PCA was first per- 
formed on the raw, non-aligned chromatograms 

(see Table 3). The loading plot for the first 
principal component, exptaining about 41% of 
the initial variation. is shown in Fig. 13. From 

the complicated pattern, and the many regions 
resembling the first time derivative, it is obvious 
that the retention shifts influence the data set to 
a very high degree. The score plot of the two 

first principal components for the raw data (Fig. 
14) shows a strong clustering according to the 
mobile phase preparations. The replicated chro- 
matograms of the same digest are in most in- 
stances very far from each other. The pattern 
can be interpreted as a general trend, going from 

the first chromatograms in the upper right part of 
the score plot via the middle left part to the last 

chromatograms in the lower right part. This 
indicates that the underlying factor might be 
related to time and not to random deviations in 

the mobile phase composition. One possible 
explanation is a gradual degradation of the 
performance of the chromatographic column, 

e.g., by the acidic mobile phase. Such prominent 
variations caused by the chromatographic pro- 
cess will certainly obscure the interesting, sam- 
ple-dependent. variations in the data set. The 
use of a multivariate classification method for 
detection of abnormal samples will probably not 

be successful with non-aligned chromatograms. 
In the next phase, PCA was performed on the 

retention aligned chromatograms, prior to the 
selective normalization and baseline adjustment 
(see Table 3). The loadings for PCl, explaining 
about 84% (data not shown), are all positive and 

the overall pattern is very similar to PCO, i.e., 
the average chromatogram. The similarity can be 
quantified by calculation of the correlation be- 
tween the variable averages and the loadings for 
PCI. The good correlation, r = 0.96, indicates 
that the dominant source of variation is related 

to the injected amount of sample. The correla- 
tion between the scores in PC1 and the initial 

amount of protein (see Table 2), is lower, Y = 
0.811. This suggests that the injected amount is 
influenced also by other factors, e.g., the re- 
covery in the sample pretreatment or the diges- 

tion efficiency. The differences in the injected 
amount will prevent the characterization of var- 

iations between samples. 
Finally. after retention alignment, selective 

normalization and baseline adjustment, the data 

set was characterized by PCA (see Table 3). If 
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Fig. 14. Score plot of the two first principal components calculated for the raw data. The letters A-H designate the mobile phase 

preparations (see Table 2). 

the scores for the two first principal components rated according to the preparation of the re- 

(together explaining about 79% of all variations agents, with the preparation labelled “a” (see 
in the final data set) are plotted against each Table 2), situated in the upper part of the score 
other (see Fig. 15), an interesting pattern is plot, i.e. with high scores in the second corn- 

revealed. The objects (chromatograms) are sepa- ponent. In the lower part of the score plot, a less 

Scores PC2 (10.9%) 

0.6 - 

3 

-0.4 ’ 
-k.5 -1 

I I I I -.. 

-0.5 0 0.5 I 

Scores FCI (67.5%) 

Fig. 15. Score plot for the two first principal components calculated for the final data set. The symbols denote the replicated 
reagent preparations (see Table 7): 0 = a; a = h; 3 = c; 0 = d. The numbers indicate the individual digests (see Table 2). 
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pronounced separation is observed for the prepa- 
ration labelled “c”. The two preparations “b” 
and “d” are not separated and situated in the 
middle of the score plot. 

The different digests (see Table 2) are also 
indicated in Fig. 15. The two replicated chro- 
matograms of the same digest are generally close 

to each other in the score plot, showing that the 
chromatographic variations are to a large extent 
removed from the data set. One exception can 

be seen for digest 1, where the two chromato- 
grams are fairly far apart in the score plot. This 
deviation can be mainly attributed to the ob- 
served large difference in the peak, probably 
corresponding to undigested cytochrome c, as 
discussed below, 

No systematic information that can be easily 
interpreted is found in the scores for the higher 
principal components (data not shown), but 

these components are nevertheless important to 
characterize the data set fully. 

The loading plot for the first principal com- 
ponent, explaining about 68%’ of all variations, is 

shown in Fig. 16. The component is dominated 
by negative loadings for the broad peak eluted at 
approximately 64 min (cf., Fig. 6). This peak is 
believed to be connected with the undigested 

cytochrome c, which means that the most im- 
portant variation in the final data set is the 

degree of digestion. It is also natural that this 
variation is preserved after the selective normali- 
zation procedure, as the amount of undigested 

PC1 

protein is negatively correlated with the amount 
of digested protein, i.e., the majority of peaks. 
The first component is not correlated with the 
average chromatogram (by loadings) or the ini- 
tial amount of protein (by scores). 

The second component, responsible for the 

separation between reagent preparations, has a 
more complicated pattern (Fig. 17). Some parts 
of the loading plot, e.g., the first peak at 16 min 

and the last peak at 68 min, show an anomalous 
pattern. This indicates that there are remaining 
variations in peak shape. 

There are some types of chromatographic 
variations that cannot be removed by the current 
method. Unfortunately, there is to our knowl- 

edge no other procedure that would be success- 
ful in the following cases either. In the presence 
of overlapping peaks, it is not possible to correct 
for variations in the overlap between the peaks. 
This could probably be achieved by fitting an 
appropriate peak shape model, e.g., Gaussian or 

exponentially modified Gaussian, to each peak in 
the chromatogram. These fitted peaks could then 

be aligned and the resulting chromatogram 
calculated. This is not an attractive solution, 
however, owing to the large number of peaks 

present in most fingerprint chromatograms. The 
proposed strategy does not compensate for varia- 
tions in peak width and tailing. Such variations 

could be caused by column degradation, which is 
a serious problem in all fingerprinting methods, 
regardless of the type of evaluation and interpre- 
tation that is used [12]. 

PC2 

J I 
10 20 36 do 5a MI 70 

ma” 

Fig. 17. PC2 loadings for the final data set. 
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The proposed alignment procedure is never- 
theless capable of reducing the chromatographic 
variations in the current data set to an acceptable 
level. This is indicated in the score plot (Fig. 15) 

by the generally small deviations for the repli- 
cated chromatograms of the same digest. The 
characterization by PCA could describe differ- 

ences between the digests that were unrelated to 
variations in peak overlap and column degra- 
dation. 

6. Conclusions 

By using the proposed retention alignment 

procedure and the selective normalization of 
peak heights, it is possible to perform principal 
component analysis on complex chromatographic 
data sets. When there are many peaks in the 

chromatograms, and there is a possibility that 
peaks can disappear and new peaks appear, it is 

beneficial to use the whole chromatographic 
profile for the analysis. The proposed method 
can be made fully automatic and allows the 

processing of numerous chromatographic profiles 
in a data set. 

For the peptide mapping data set used in this 

study it was possible to detect differences be- 
tween the digests that would have been obscured 
by the chromatographic variations if proper 

alignment had not been performed. 
The proposed pretreatment method is also 

applicable to other situations where complex 

chromatographic data sets are treated by multi- 
variate data analysis, e.g., pyrolysis-GC [3]. In 

the accompanying paper [ 71. multivariate classifi- 
cation of tryptic digests is suggested as an objec- 
tive evaluation method for peptide mapping. 
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Appendix 

Despite the complex appearance of the EMG 
function in the time domain (Eq. l), the calcula- 
tions can readily be performed in the frequency 
domain. The Fourier transform of the EMG 
function is 

y”(w) = A exp[-(tig’)‘] exp(-jwf:)/(l +jwr’) 

(AI) 

The primed versions of the time related parame- 
ters f,, 0 and T are scaled with the constant 
27r/T, where T is the duration of the time 

function. 
The equation can be interpreted according to 

three frequency-dependent factors: 
(i) exp] - (tia’)‘], a Gaussian peak of width 0 

with unit area around t = 0; 

(ii) exp(-jwt;), shifting this peak along the 
time axis by t, ; 

(iii) l/(1 + jwT’), convolution of the shifted 

peak with an exponential decay with time 
constant T (tailing). 

Finally this unit area peak is multiplied with the 

area parameter A. 
The transform can easily be calculated for o = 

0, 1, 2, . . 7 N, and the time function is then 

obtained for 2N equally spaced points in time by 
the inverse fast Fourier transform (IFFT). All 
simulated chromatograms with EMG peaks in 
this work were obtained in this way. 

Moreover, the separation of the parameters in 

the four factors facilitates the calculation of the 
partial derivatives: 

g = (1 /A)y(oj 642) 

3 = (-jw)y”((o) (A3) 
r 

af 
A = -2a’(w*)y”((w) = 2a’(jw)( jo)y”((w) 
&’ 

(Ad) 

$- = [(-jo)/(l 4 jor’)]y”(m) (AS) 

By including the scaling constant 21rlT, the 
partial derivatives with respect to the original, 
unprimed, parameters are obtained. They can be 
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transformed to the time domain by IFFT. How- 

ever, the shape of the partial derivatives in the 

time domain can be predicted without numerical 
calculations. Apart from constants, i.e., factors 
not containing w, the derivatives are the original 

EMG function, possibly multiplied with the 
factors ju and I/( 1 +jw~). Multiplication with 
these factors in the frequency domain corre- 

sponds to the time operations didt (time dif- 
ferentiation) and convolution with exp(--t/r), 
respectively. Thus partial differentiation corre- 

sponds to the following shape modifications of 
the EMG time function: 

aidA unmodified; 

alat, time differentiation; 

a/au time differentiation twice; 

ala7 time differentiation and exponential 

convolution 
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